

PROCESS SIMULATION USING ASPEN HYSYS

MSc in Petroleum Engineering MFKOT710021

COURSE DESCRIPTION

Miskolc University
Faculty of Earth Science and Engineering
Institute of Petroleum and Natural Gas

Miskolc, 2022/2023 I. félév / Semester

Course Data Sheet

Course Title: Free elective	Code: MFKOT710021	
Process Simulation Using ASPEN	Responsible department/institute:	
HYSYS	DPE/IPNG (OMTSZ/KFGI)	
Instructor: Dr. László KIS, senior	Course Element: Free Elective	
lecturer		
Position in curriculum*	Pre-requisites (if any): no	
(which semester):		
(4)		
No. of contact hours per week (lecture	Type of Assessment (examination /	
+ seminar): 2+0	practical mark / other): practical mark	
Credits: 2	Course: full time	

Course Description:

- 1. The Aspen HYSYS software package, its features, its applications, and the problems that can be solved.
- 2. Examination of elements suitable for production oil and natural gas: pipelines
- 3. Heat exchangers
- 4. Compressors
- 5. Expanders
- 6. Separators
- 7. Mixers
- 8. Production systems
- 9. Modeling of the technological sub-processes used to produce crude oil
- 10. Modeling of the technological sub-processes used to produce natural gas
- 11. Modeling of the technological sub-processes used during pipeline transport.
- 12. Evaluation of simulation results.
- 13. Structure of the cold separation technology model relating to the natural gas preparation, uploading, running and evaluation of data.
- 14. Compilation of documentation to solve the problem.

Competencies to evolve:

Knowledge: T1, T4, T5, T11

Ability: K1, K4, K5, K9, K10, K11

Attitude:

Autonomy and responsibility: F1, F3, F6, F7

Assessment and grading:		Grading scale:	
Students will be assessed with using the		% value	Grade
following elements.		00 1000/	5
Attendance:	5 %	90 -100%	(excellent)
Homework	10 %	80 - 89%	4 (good)
Midterm exam	40 %		3
Final exam	45 %	70 - 79%	(satisfactory
Total	100%)
		60 - 69%	2 (pass)

0 - 59% 1 (failed)

Compulsory or recommended literature resources:

- User Manuals of ASPEN HYSYS Software
- R. N. Maddox, D. J. Morgan: Gas Conditioning and Processing: Volume 4: Gas Treating and Sulfur Recovery, Campbell Petroleum Series, 2008
- F. S. Manning, R. E. Thompson: Oilfield Processing: volume Two: Crude Oil, PenWell, 1995.
- Gas Conditioning and Processing: Volume 2: Equipment Modules, Campbell Petroleum Series, 2013
- A. Bahadori: Natural Gas Processing: Technology and Engineering Design, Gulf Professional Publishing, 2014. ISBN 9780124202047

Course Schedule for 2020/21 school year

Date	Topic
	The Aspen HYSYS software package, its features, its applications, and
9/7/2022	the problems that can be solved.
	Examination of elements suitable for production oil and natural gas:
9/14/2022	pipelines
9/21/2022	Break
9/28/2022	Heat exchangers, Compressors
10/5/2022	Expanders
10/12/2022	Separators, Mixers
10/19/2022	Test writing.
10/26/2022	Production systems
11/2/2022	Break
	Modeling of the technological sub-processes used to produce crude oil
11/9/2022	andnatural gas
	Modeling of the technological sub-processes used during pipeline
11/16/2022	transport.
11/23/2022	Evaluation of simulation results.
	Structure of the cold separation technology model relating to the
	natural gas preparation, uploading, running and evaluation of data.
11/30/2022	Compilation of documentation to solve the problem.
12/7/2022	Test writing.

Test Example

HYSYS TEST (80 points)

The given gas mixture flows in a 12 km long pipeline with 450 mm outer diameter and 425 mm inner diameter. The pipeline descends 20 m in the flow direction. The soil temperature is 8°C, the pipe is insulated with 4.2 cm thick fiberglass block. The pipe is buried at 1.3m in dry clay. The starting pressure is 24 bar, the starting temperature is 20°C and the mass flow rate is 50 t/d.

1. Find the outlet gas pressure and temperature. (5p+5p)

The pipeline is connected to a 3 phase separator.

Find the mass flow rate of the 3 phases. (2p+2p+2p)

Increase the pressure of the gaseous phase to 52 bar using a compressor with 90% adiabatic efficiency.

 Find the temperature of the compressed gas and the required power. (2p+2p)

The compressed gas is fed to a heat exchanger's tube side. 50-50 mol% nitrogen and carbon-dioxide is fed to the shell side. Before the heat exchanger the nitrogen and carbon dioxide mixture is flowing in a 1.5 km long pipeline with 25 m elevation change in the flow direction. The outer

Component	Mol %
Methane	0.7254
Propane	0.1231
n-Butane	0.0044
i-Butane	0.0029
Ethane	0.0321
i-Pentane	0.0049
n-Pentane	0.0071
n-Hexane	0.0024
n-Heptane	0.0009
n-Octane	0.0019
n-Nonane	0.0014
n-Decane	0.0286
H₂O	0.0021
H₂S	0.0011
CO2	0.0496
Nitrogen	0.0098
Oxygen	0.0022
Mercury	0.0001

diameter of the pipe is 252 mm and the wall thickness is 1.5 cm. The total heat loss is 4097.9 kcal/h. The initial pressure and temperature of the nitrogen and carbon-dioxide mixture is 6 bar and 8°C respectively. The mass flow rate is 125999 kg/d. The specified pressure drop is 0.5 bar for both sides of the heat exchanger. The overall heat transfer coefficient (UA) is 3500 kJ/°C h.

- 4. Find the pressure and temperature of the cooling gas entering the heat exchanger, (5p+5p)
- Find the temperature of the nitrogen and carbon-dioxide mixture and the HC gas mixture leaving the heat exchanger. (5p+5p)

The HC gas mixture is transported in a three segmented pipeline. The elevation changes are -43.34 m, 1260 dm and 2300 cm in the segments. The length of the segments are 42650 m, 372599 m and 14329 m. The pipes have the same 4cm thick urethane foam insulation and are laid 1.7 m depth in 3°C wet sand.

- Find the minimal nominal diameter using Schedule 40 pipe. Find the endpoint pressure and temperature of the gas. (10p+5p)
- Create a case study to find the relationship between the mass flow rate of the HC gas and the
 pressure of the HC gas after the three-segmented pipeline. Find the maximal throughoutput
 capacity that can be divided by 100. (5p+5p)
- Create a case study to find the relationship between the mass flow rate of the cooling gas and the temperature of the cooled HC gas after the heat exchanger. Find required cooling gas mass flow rate to achieve 32°C HC gas temperature. (5p+5p)
- Create a case study to find the relationship between the mass flow rate of the HC gas and the temperature of the HC gas at the endpoint. (5p)

Examination review questions

The exam is a practical one with the task of creating a system in HYSYS such as in the test and answer the emerging questions.